Papers
Topics
Authors
Recent
Search
2000 character limit reached

DeepKey: An EEG and Gait Based Dual-Authentication System

Published 6 Jun 2017 in cs.LG | (1706.01606v2)

Abstract: Biometric authentication involves various technologies to identify individuals by exploiting their unique, measurable physiological and behavioral characteristics. However, traditional biometric authentication systems (e.g., face recognition, iris, retina, voice, and fingerprint) are facing an increasing risk of being tricked by biometric tools such as anti-surveillance masks, contact lenses, vocoder, or fingerprint films. In this paper, we design a multimodal biometric authentication system named Deepkey, which uses both Electroencephalography (EEG) and gait signals to better protect against such risk. Deepkey consists of two key components: an Invalid ID Filter Model to block unauthorized subjects and an identification model based on attention-based Recurrent Neural Network (RNN) to identify a subjects EEG IDs and gait IDs in parallel. The subject can only be granted access while all the components produce consistent evidence to match the users proclaimed identity. We implement Deepkey with a live deployment in our university and conduct extensive empirical experiments to study its technical feasibility in practice. DeepKey achieves the False Acceptance Rate (FAR) and the False Rejection Rate (FRR) of 0 and 1.0%, respectively. The preliminary results demonstrate that Deepkey is feasible, show consistent superior performance compared to a set of methods, and has the potential to be applied to the authentication deployment in real world settings.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.