Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Berezinskii-Kosterlitz-Thouless transition and criticality of an elliptic deformation of the sine-Gordon model (1706.01444v2)

Published 5 Jun 2017 in hep-th and cond-mat.stat-mech

Abstract: We introduce and study the properties of a periodic model interpolating between the sine-- and the sinh--Gordon theories in $1+1$ dimensions. This model shows the peculiarities, due to the preservation of the functional form of their potential across RG flows, of the two limiting cases: the sine-Gordon, not having conventional order/magnetization at finite temperature, but exhibiting Berezinskii-Kosterlitz-Thouless (BKT) transition; and the sinh-Gordon, not having a phase transition, but being integrable. The considered interpolation, which we term as {\em sn-Gordon} model, is performed with potentials written in terms of Jacobi functions. The critical properties of the sn-Gordon theory are discussed by a renormalization-group approach. The critical points, except the sinh-Gordon one, are found to be of BKT type. Explicit expressions for the critical coupling as a function of the elliptic modulus are given.

Summary

We haven't generated a summary for this paper yet.