Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring protein-protein interaction and protein-DNA interaction directions based on cause-effect pairs in undirected and mixed networks (1706.00911v1)

Published 3 Jun 2017 in cs.DS and cs.CC

Abstract: We consider the following problem: Given an undirected (mixed) network and a set of ordered source-target, or cause-effect pairs, direct all edges so as to maximize the number of pairs that admit a directed source-target path. This is called maximum graph orientation problem, and has applications in understanding interactions in protein-protein interaction networks and protein-DNA interaction networks. We have studied the problem on both undirected and mixed networks. In the undirected case, we determine the parameterized complexity of the problem (for non-fixed and fixed paths) with respect to the number of satisfied pairs, which has been an open problem. Also, we present an exact algorithm which outperforms the previous algorithms on trees with bounded number of leaves. In addition, we present a parameterized-approximation algorithm with respect to a parameter named the number of backbones of a tree. In the mixed case, we present polynomial-time algorithms for the problem on paths and cycles, and an FPT-algorithm based on the combined parameter the number of arcs and the number of pairs on general graphs.

Summary

We haven't generated a summary for this paper yet.