Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence and nonexistence of solutions to Choquard equations (1706.00706v1)

Published 2 Jun 2017 in math.AP

Abstract: In this paper, we establish the existence of ground state solutions for Choquard equations \begin{equation}\label{eq 1} - \Delta u + u = q\,(I_\alpha \ast |u|p) |u|{q - 2} u+p\,(I_\alpha \ast |u|q) |u|{p - 2} u\quad {\rm in }\quad \mathbb{R}N, \end{equation} where $N \ge 3$, $\alpha \in (0, N)$, $I_\alpha: \mathbb{R}N \to \mathbb{R}$ is the Riesz potential, $p,\,q >0$ satisfying that \begin{equation}\label{eq 2} \frac{2(N+\alpha)}{N}<p+q< \frac{2(N+\alpha)}{N-2}. \end{equation} Moreover, we prove a Poho\v{z}aev type identity for this Choquard equation, which implies the non-existence result for the problem when $(p,q)$ does not satisfy the above condition.

Summary

We haven't generated a summary for this paper yet.