Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics (1706.00287v1)

Published 1 Jun 2017 in math.AP, math-ph, math.DS, math.MP, and physics.flu-dyn

Abstract: In {\em{Holm}, Proc. Roy. Soc. A 471 (2015)} stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby justifying stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centering condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow.

Summary

We haven't generated a summary for this paper yet.