Papers
Topics
Authors
Recent
Search
2000 character limit reached

Automatic Differentiation using Constraint Handling Rules in Prolog

Published 1 Jun 2017 in cs.MS, cs.PL, and cs.SC | (1706.00231v1)

Abstract: Automatic differentiation is a technique which allows a programmer to define a numerical computation via compositions of a broad range of numeric and computational primitives and have the underlying system support the computation of partial derivatives of the result with respect to any of its inputs, without making any finite difference approximations, and without manipulating large symbolic expressions representing the computation. This note describes a novel approach to reverse mode automatic differentiation using constraint logic programmming, specifically, the constraint handling rules (CHR) library of SWI Prolog, resulting in a very small (50 lines of code) implementation. When applied to a differentiation-based implementation of the inside-outside algorithm for parameter learning in probabilistic grammars, the CHR based implementations outperformed two well-known frameworks for optimising differentiable functions, Theano and TensorFlow, by a large margin.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.