Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning When to Attend for Neural Machine Translation (1705.11160v1)

Published 31 May 2017 in cs.CL

Abstract: In the past few years, attention mechanisms have become an indispensable component of end-to-end neural machine translation models. However, previous attention models always refer to some source words when predicting a target word, which contradicts with the fact that some target words have no corresponding source words. Motivated by this observation, we propose a novel attention model that has the capability of determining when a decoder should attend to source words and when it should not. Experimental results on NIST Chinese-English translation tasks show that the new model achieves an improvement of 0.8 BLEU score over a state-of-the-art baseline.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Junhui Li (51 papers)
  2. Muhua Zhu (8 papers)
Citations (1)