Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Design of Deep Neural Networks as Add-on Blocks for Improving Impromptu Trajectory Tracking (1705.10932v2)

Published 31 May 2017 in cs.RO

Abstract: This paper introduces deep neural networks (DNNs) as add-on blocks to baseline feedback control systems to enhance tracking performance of arbitrary desired trajectories. The DNNs are trained to adapt the reference signals to the feedback control loop. The goal is to achieve a unity map between the desired and the actual outputs. In previous work, the efficacy of this approach was demonstrated on quadrotors; on 30 unseen test trajectories, the proposed DNN approach achieved an average impromptu tracking error reduction of 43% as compared to the baseline feedback controller. Motivated by these results, this work aims to provide platform-independent design guidelines for the proposed DNN-enhanced control architecture. In particular, we provide specific guidelines for the DNN feature selection, derive conditions for when the proposed approach is effective, and show in which cases the training efficiency can be further increased.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com