Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal secure rank-metric coding schemes with optimal communication overheads (1705.10592v2)

Published 30 May 2017 in cs.IT and math.IT

Abstract: We study the problem of reducing the communication overhead from a noisy wire-tap channel or storage system where data is encoded as a matrix, when more columns (or their linear combinations) are available. We present its applications to reducing communication overheads in universal secure linear network coding and secure distributed storage with crisscross errors and erasures and in the presence of a wire-tapper. Our main contribution is a method to transform coding schemes based on linear rank-metric codes, with certain properties, to schemes with lower communication overheads. By applying this method to pairs of Gabidulin codes, we obtain coding schemes with optimal information rate with respect to their security and rank error correction capability, and with universally optimal communication overheads, when $ n \leq m $, being $ n $ and $ m $ the number of columns and number of rows, respectively. Moreover, our method can be applied to other families of maximum rank distance codes when $ n > m $. The downside of the method is generally expanding the packet length, but some practical instances come at no cost.

Citations (2)

Summary

We haven't generated a summary for this paper yet.