Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Consistency Theory for Modeling Twitter Hashtag Adoption (1705.10455v1)

Published 30 May 2017 in cs.SI

Abstract: Twitter, a microblogging service, has evolved into a powerful communication platform with millions of active users who generate immense volume of microposts on a daily basis. To facilitate effective categorization and easy search, users adopt hashtags, keywords or phrases preceded by hash (#) character. Successful prediction of the spread and propagation of information in the form of trending topics or hashtags in Twitter, could help real time identification of new trends and thus improve marketing efforts. Social theories such as consistency theory suggest that people prefer harmony or consistency in their thoughts. In Twitter, for example, users are more likely to adopt the same trending hashtag multiple times before it eventually dies. In this paper, we propose a low-rank weighted matrix factorization approach to model trending hashtag adoption in Twitter based on consistency theory. In particular, we first cast the problem of modeling trending hashtag adoption into an optimization problem, then integrate consistency theory into it as a regularization term and finally leverage widely used matrix factorization to solve the optimization. Empirical experiments demonstrate that our method outperforms other baselines in predicting whether a specific trending hashtag will be used by users in future.

Summary

We haven't generated a summary for this paper yet.