Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On approximating copulas by finite mixtures (1705.10440v3)

Published 30 May 2017 in stat.ME

Abstract: Copulas are now frequently used to construct or estimate multivariate distributions because of their ability to take into account the multivariate dependence of the different variables while separately specifying marginal distributions. Copula based multivariate models can often also be more parsimonious than fitting a flexible multivariate model, such as a mixture of normals model, directly to the data. However, to be effective, it is imperative that the family of copula models considered is sufficiently flexible. Although finite mixtures of copulas have been used to construct flexible families of copulas, their approximation properties are not well understood and we show that natural candidates such as mixtures of elliptical copulas and mixtures of Archimedean copulas cannot approximate a general copula arbitrarily well. Our article develops fundamental tools for approximating a general copula arbitrarily well by a copulas based on finite mixtures. We show the asymptotic properties as well as illustrate the advantages of our methodology empirically on a financial data set and on some artificial data.

Summary

We haven't generated a summary for this paper yet.