Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamics of transcendental Hénon maps (1705.09183v1)

Published 25 May 2017 in math.CV and math.DS

Abstract: The dynamics of transcendental functions in the complex plane has received a significant amount of attention. In particular much is known about the description of Fatou components. Besides the types of periodic Fatou components that can occur for polynomials, there also exist so-called Baker domains, periodic components where all orbits converge to infinity, as well as wandering domains. In trying to find analogues of these one dimensional results, it is not clear which higher dimensional transcendental maps to consider. In this paper we find inspiration from the extensive work on the dynamics of complex H\'enon maps. We introduce the family of transcendental H\'enon maps, and study their dynamics, emphasizing the description of Fatou components. We prove that the classification of the recurrent invariant Fatou components is similar to that of polynomial H\'enon maps, and we give examples of Baker domains and wandering domains.

Summary

We haven't generated a summary for this paper yet.