Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weakly Supervised Semantic Segmentation Based on Web Image Co-segmentation (1705.09052v3)

Published 25 May 2017 in cs.CV

Abstract: Training a Fully Convolutional Network (FCN) for semantic segmentation requires a large number of masks with pixel level labelling, which involves a large amount of human labour and time for annotation. In contrast, web images and their image-level labels are much easier and cheaper to obtain. In this work, we propose a novel method for weakly supervised semantic segmentation with only image-level labels. The method utilizes the internet to retrieve a large number of images and uses a large scale co-segmentation framework to generate masks for the retrieved images. We first retrieve images from search engines, e.g. Flickr and Google, using semantic class names as queries, e.g. class names in the dataset PASCAL VOC 2012. We then use high quality masks produced by co-segmentation on the retrieved images as well as the target dataset images with image level labels to train segmentation networks. We obtain an IoU score of 56.9 on test set of PASCAL VOC 2012, which reaches the state-of-the-art performance.

Citations (16)

Summary

We haven't generated a summary for this paper yet.