Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fermion-induced quantum criticality in two-dimensional Dirac semimetals: Non-perturbative flow equations, fixed points and critical exponents (1705.08973v2)

Published 24 May 2017 in cond-mat.str-el, cond-mat.stat-mech, and hep-th

Abstract: We establish a scenario where fluctuations of new degrees of freedom at a quantum phase transition change the nature of a transition beyond the standard Landau-Ginzburg paradigm. To this end we study the quantum phase transition of gapless Dirac fermions coupled to a $\mathbb{Z}_3$ symmetric order parameter within a Gross-Neveu-Yukawa model in 2+1 dimensions, appropriate for the Kekul\'e transition in honeycomb lattice materials. For this model the standard Landau-Ginzburg approach suggests a first order transition due to the symmetry-allowed cubic terms in the action. At zero temperature, however, quantum fluctuations of the massless Dirac fermions have to be included. We show that they reduce the putative first-order character of the transition and can even render it continuous, depending on the number of Dirac fermions $N_f$. A non-perturbative functional renormalization group approach is employed to investigate the phase transition for a wide range of fermion numbers. For the first time we obtain the critical $N_f$, where the nature of the transition changes. Furthermore, it is shown that for large $N_f$ the change from the first to second order of the transition as a function of dimension occurs exactly in the physical 2+1 dimensions. We compute the critical exponents and predict sizable corrections to scaling for $N_f =2$.

Summary

We haven't generated a summary for this paper yet.