Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gravity from Quantum Spacetime by Twisted Deformation of the Quantum Poincaré Group (1705.08959v1)

Published 24 May 2017 in math-ph, gr-qc, hep-th, and math.MP

Abstract: We investigate a quantum geometric space in the context of what could be considered an emerging effective theory from Quantum Gravity. Specifically we consider a two-parameter class of twisted Poincar\'e algebras, from which Lie-algebraic noncommutativities of the translations are derived as well as associative star-products, deformed Riemannian geometries, Lie-algebraic twisted Minkowski spaces and quantum effects that arise as noncommutativities. Starting from a universal differential algebra of forms based on the above mentioned Lie-algebraic noncommutativities of the translations, we construct the noncommutative differential forms and Inner and Outer derivations, which are the noncommutative equivalents of the vector fields in the case of commutative differential geometry. Having established the essentials of this formalism we construct a bimodule, required to be central under the action of the Inner derivations in order to have well defined contractions and from where the algebraic dependence of its coefficients is derived. This again then defines the noncommutative equivalent of the geometrical line-element in commutative differential geometry. We stress, however, that even though the components of the twisted metric are by construction symmetric in their algebra valuation, this is not so for their inverse and thus to construct it we made use of Gel'fand's theory of quasi-determinants, which is conceptually straightforward but computationally becoming quite complicate beyond an algebra of 3 generators. The consequences of the noncommutativity of the Lie-algebra twisted geometry are further discussed.

Summary

We haven't generated a summary for this paper yet.