Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonparametric Preference Completion (1705.08621v2)

Published 24 May 2017 in stat.ML and cs.LG

Abstract: We consider the task of collaborative preference completion: given a pool of items, a pool of users and a partially observed item-user rating matrix, the goal is to recover the \emph{personalized ranking} of each user over all of the items. Our approach is nonparametric: we assume that each item $i$ and each user $u$ have unobserved features $x_i$ and $y_u$, and that the associated rating is given by $g_u(f(x_i,y_u))$ where $f$ is Lipschitz and $g_u$ is a monotonic transformation that depends on the user. We propose a $k$-nearest neighbors-like algorithm and prove that it is consistent. To the best of our knowledge, this is the first consistency result for the collaborative preference completion problem in a nonparametric setting. Finally, we demonstrate the performance of our algorithm with experiments on the Netflix and Movielens datasets.

Citations (9)

Summary

We haven't generated a summary for this paper yet.