Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 191 tok/s Pro
2000 character limit reached

Stable Limit Theorems for Empirical Processes under Conditional Neighborhood Dependence (1705.08413v4)

Published 23 May 2017 in math.ST and stat.TH

Abstract: This paper introduces a new concept of stochastic dependence among many random variables which we call conditional neighborhood dependence (CND). Suppose that there are a set of random variables and a set of sigma algebras where both sets are indexed by the same set endowed with a neighborhood system. When the set of random variables satisfies CND, any two non-adjacent sets of random variables are conditionally independent given sigma algebras having indices in one of the two sets' neighborhood. Random variables with CND include those with conditional dependency graphs and a class of Markov random fields with a global Markov property. The CND property is useful for modeling cross-sectional dependence governed by a complex, large network. This paper provides two main results. The first result is a stable central limit theorem for a sum of random variables with CND. The second result is a Donsker-type result of stable convergence of empirical processes indexed by a class of functions satisfying a certain bracketing entropy condition when the random variables satisfy CND.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.