Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Optimal Routing for the Uplink in LPWANs Using Similarity-enhanced epsilon-greedy (1705.08304v1)

Published 22 May 2017 in cs.NI

Abstract: Despite being a relatively new communication technology, Low-Power Wide Area Networks (LPWANs) have shown their suitability to empower a major part of Internet of Things applications. Nonetheless, most LPWAN solutions are built on star topology (or single-hop) networks, often causing lifetime shortening in stations located far from the gateway. In this respect, recent studies show that multi-hop routing for uplink communications can reduce LPWANs' energy consumption significantly. However, it is a troublesome task to identify such energetically optimal routings through trial-and-error brute-force approaches because of time and, especially, energy consumption constraints. In this work we show the benefits of facing this exploration/exploitation problem by running centralized variations of the multi-arm bandit's epsilon-greedy, a well-known online decision-making method that combines best known action selection and knowledge expansion. Important energy savings are achieved when proper randomness parameters are set, which are often improved when conveniently applying similarity, a concept introduced in this work that allows harnessing the gathered knowledge by sporadically selecting unexplored routing combinations akin to the best known one.

Citations (9)

Summary

We haven't generated a summary for this paper yet.