Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Size Matters: Cardinality-Constrained Clustering and Outlier Detection via Conic Optimization (1705.07837v3)

Published 22 May 2017 in math.OC and stat.ML

Abstract: Plain vanilla K-means clustering has proven to be successful in practice, yet it suffers from outlier sensitivity and may produce highly unbalanced clusters. To mitigate both shortcomings, we formulate a joint outlier detection and clustering problem, which assigns a prescribed number of datapoints to an auxiliary outlier cluster and performs cardinality-constrained K-means clustering on the residual dataset, treating the cluster cardinalities as a given input. We cast this problem as a mixed-integer linear program (MILP) that admits tractable semidefinite and linear programming relaxations. We propose deterministic rounding schemes that transform the relaxed solutions to feasible solutions for the MILP. We also prove that these solutions are optimal in the MILP if a cluster separation condition holds.

Citations (28)

Summary

We haven't generated a summary for this paper yet.