Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The structure of random automorphisms of countable structures (1705.07593v3)

Published 22 May 2017 in math.LO

Abstract: In order to understand the structure of the `typical' element of an automorphism group, one has to study how large the conjugacy classes of the group are. When typical is meant in the sense of Baire category, a complete description of the size of the conjugacy classes has been given by Kechris and Rosendal. Following Dougherty and Mycielski we investigate the measure theoretic dual of this problem, using Christensen's notion of Haar null sets. When typical means random, that is, almost every with respect to this notion of Haar null sets, the behavior of the automorphisms is entirely different from the Baire category case. In this paper, we generalize the theorems of Dougherty and Mycielski about $S_\infty$ to arbitrary automorphism groups of countable structures isolating a new model theoretic property, the Cofinal Strong Amalgamation Property. As an application we show that a large class of automorphism groups can be decomposed into the union of a meager and a Haar null set.

Summary

We haven't generated a summary for this paper yet.