Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

More results on the distance (signless) Laplacian eigenvalues of graphs (1705.07419v1)

Published 21 May 2017 in math.CO

Abstract: Let $G$ be a connected graph with vertex set $V(G)$ and edge set $E(G)$. Let $Tr(G)$ be the diagonal matrix of vertex transmissions of $G$ and $D(G)$ be the distance matrix of $G$. The distance Laplacian matrix of $G$ is defined as $\mathcal{L}(G)=Tr(G)-D(G)$. The distance signless Laplacian matrix of $G$ is defined as $\mathcal{Q}(G)=Tr(G)+D(G)$. In this paper, we give a lower bound on the distance Laplacian spectral radius in terms of $D_1$, as a consequence, we show that $\partial_1L(G)\geq n+\lceil\frac{n}{\omega}\rceil$ where $\omega$ is the clique number of $G$. Furthermore, we give some graft transformations, by using them, we characterize the extremal graph attains the maximum distance spectral radius in terms of $n$ and $\omega$. Moreover, we also give bounds on the distance signless Laplacian eigenvalues of $G$, and give a confirmation on a conjecture due to Aouchiche and Hansen.

Summary

We haven't generated a summary for this paper yet.