Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Dynkin game on assets with incomplete information on the return

Published 20 May 2017 in math.PR, math.OC, and q-fin.MF | (1705.07352v4)

Abstract: This paper studies a 2-players zero-sum Dynkin game arising from pricing an option on an asset whose rate of return is unknown to both players. Using filtering techniques we first reduce the problem to a zero-sum Dynkin game on a bi-dimensional diffusion $(X,Y)$. Then we characterize the existence of a Nash equilibrium in pure strategies in which each player stops at the hitting time of $(X,Y)$ to a set with moving boundary. A detailed description of the stopping sets for the two players is provided along with global $C1$ regularity of the value function.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.