Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nestrov's Acceleration For Second Order Method (1705.07171v2)

Published 19 May 2017 in cs.LG

Abstract: Optimization plays a key role in machine learning. Recently, stochastic second-order methods have attracted much attention due to their low computational cost in each iteration. However, these algorithms might perform poorly especially if it is hard to approximate the Hessian well and efficiently. As far as we know, there is no effective way to handle this problem. In this paper, we resort to Nestrov's acceleration technique to improve the convergence performance of a class of second-order methods called approximate Newton. We give a theoretical analysis that Nestrov's acceleration technique can improve the convergence performance for approximate Newton just like for first-order methods. We accordingly propose an accelerated regularized sub-sampled Newton. Our accelerated algorithm performs much better than the original regularized sub-sampled Newton in experiments, which validates our theory empirically. Besides, the accelerated regularized sub-sampled Newton has good performance comparable to or even better than state-of-art algorithms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.