Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asynchronous parallel primal-dual block coordinate update methods for affinely constrained convex programs (1705.06391v2)

Published 18 May 2017 in math.OC, cs.DC, cs.NA, math.NA, and stat.ML

Abstract: Recent several years have witnessed the surge of asynchronous (async-) parallel computing methods due to the extremely big data involved in many modern applications and also the advancement of multi-core machines and computer clusters. In optimization, most works about async-parallel methods are on unconstrained problems or those with block separable constraints. In this paper, we propose an async-parallel method based on block coordinate update (BCU) for solving convex problems with nonseparable linear constraint. Running on a single node, the method becomes a novel randomized primal-dual BCU with adaptive stepsize for multi-block affinely constrained problems. For these problems, Gauss-Seidel cyclic primal-dual BCU needs strong convexity to have convergence. On the contrary, merely assuming convexity, we show that the objective value sequence generated by the proposed algorithm converges in probability to the optimal value and also the constraint residual to zero. In addition, we establish an ergodic $O(1/k)$ convergence result, where $k$ is the number of iterations. Numerical experiments are performed to demonstrate the efficiency of the proposed method and significantly better speed-up performance than its sync-parallel counterpart.

Citations (8)

Summary

We haven't generated a summary for this paper yet.