Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shape Classification using Spectral Graph Wavelets (1705.06250v1)

Published 12 May 2017 in cs.GR

Abstract: Spectral shape descriptors have been used extensively in a broad spectrum of geometry processing applications ranging from shape retrieval and segmentation to classification. In this pa- per, we propose a spectral graph wavelet approach for 3D shape classification using the bag-of-features paradigm. In an effort to capture both the local and global geometry of a 3D shape, we present a three-step feature description framework. First, local descriptors are extracted via the spectral graph wavelet transform having the Mexican hat wavelet as a generating ker- nel. Second, mid-level features are obtained by embedding lo- cal descriptors into the visual vocabulary space using the soft- assignment coding step of the bag-of-features model. Third, a global descriptor is constructed by aggregating mid-level fea- tures weighted by a geodesic exponential kernel, resulting in a matrix representation that describes the frequency of appearance of nearby codewords in the vocabulary. Experimental results on two standard 3D shape benchmarks demonstrate the effective- ness of the proposed classification approach in comparison with state-of-the-art methods.

Citations (16)

Summary

We haven't generated a summary for this paper yet.