Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lifting the Cartier transform of Ogus-Vologodsky modulo $p^n$ (1705.06241v2)

Published 17 May 2017 in math.AG

Abstract: Let $W$ be the ring of the Witt vectors of a perfect field of characteristic $p$, $\mathfrak{X}$ a smooth formal scheme over $W$, $\mathfrak{X}'$ the base change of $\mathfrak{X}$ by the Frobenius morphism of $W$, $\mathfrak{X}{2}'$ the reduction modulo $p{2}$ of $\mathfrak{X}'$ and $X$ the special fiber of $\mathfrak{X}$. We lift the Cartier transform of Ogus-Vologodsky defined by $\mathfrak{X}{2}'$ modulo $p{n}$. More precisely, we construct a functor from the category of $p{n}$-torsion $\mathscr{O}{\mathfrak{X}'}$-modules with integrable $p$-connection to the category of $p{n}$-torsion $\mathscr{O}{\mathfrak{X}}$-modules with integrable connection, each subject to suitable nilpotence conditions. Our construction is based on Oyama's reformulation of the Cartier transform of Ogus-Vologodsky in characteristic $p$. If there exists a lifting $F:\mathfrak{X}\to \mathfrak{X}'$ of the relative Frobenius morphism of $X$, our functor is compatible with a functor constructed by Shiho from $F$. As an application, we give a new interpretation of Faltings' relative Fontaine modules and of the computation of their cohomology.

Summary

We haven't generated a summary for this paper yet.