Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetry breaking operators for strongly spherical reductive pairs (1705.06109v2)

Published 17 May 2017 in math.RT and math.NT

Abstract: A real reductive pair $(G,H)$ is called strongly spherical if the homogeneous space $(G\times H)/{\rm diag}(H)$ is real spherical. This geometric condition is equivalent to the representation theoretic property that ${\rm dim\,Hom}_H(\pi|_H,\tau)<\infty$ for all smooth admissible representations $\pi$ of $G$ and $\tau$ of $H$. In this paper we explicitly construct for all strongly spherical pairs $(G,H)$ intertwining operators in ${\rm Hom}_H(\pi|_H,\tau)$ for $\pi$ and $\tau$ spherical principal series representations of $G$ and $H$. These so-called symmetry breaking operators depend holomorphically on the induction parameters and we further show that they generically span the space ${\rm Hom}_H(\pi|_H,\tau)$. In the special case of multiplicity one pairs we extend our construction to vector-valued principal series representations and obtain generic formulas for the multiplicities between arbitrary principal series. As an application, we prove an early version of the Gross-Prasad conjecture for complex orthogonal groups, and also provide lower bounds for the dimension of the space of Shintani functions.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com