Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Eisenstein series in $M_{2k}(Γ_0(N))$ and their applications (1705.06032v3)

Published 17 May 2017 in math.NT

Abstract: Let $k,N \in \mathbb{N}$ with $N$ square-free and $k>1$. We prove an orthogonal relation and use this to compute the Fourier coefficients of the Eisenstein part of any $f(z) \in M_{2k}(\Gamma_0(N))$ in terms of sum of divisors function. In particular, if $f(z) \in E_{2k}(\Gamma_0(N))$, then the computation will to yield to an expression for the Fourier coefficients of $f(z)$. Then we apply our main theorem to give formulas for convolution sums of the divisor function to extend the result by Ramanujan, and to eta quotients which yields to formulas for number of representations of integers by certain families of quadratic forms. At last we give essential results to derive similar results for modular forms in a more general setting.

Summary

We haven't generated a summary for this paper yet.