Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Algebraic Multiscale Solver for Compressible Flow in Heterogeneous Porous Media (1705.05783v1)

Published 15 May 2017 in math.NA, cs.CE, physics.comp-ph, and physics.flu-dyn

Abstract: This paper presents the development of an Adaptive Algebraic Multiscale Solver for Compressible flow (C-AMS) in heterogeneous porous media. Similar to the recently developed AMS for incompressible (linear) flows [Wang et al., JCP, 2014], C-AMS operates by defining primal and dual-coarse blocks on top of the fine-scale grid. These coarse grids facilitate the construction of a conservative (finite volume) coarse-scale system and the computation of local basis functions, respectively. However, unlike the incompressible (elliptic) case, the choice of equations to solve for basis functions in compressible problems is not trivial. Therefore, several basis function formulations (incompressible and compressible, with and without accumulation) are considered in order to construct an efficient multiscale prolongation operator. As for the restriction operator, C-AMS allows for both multiscale finite volume (MSFV) and finite element (MSFE) methods. Finally, in order to resolve high-frequency errors, fine-scale (pre- and post-) smoother stages are employed. In order to reduce computational expense, the C-AMS operators (prolongation, restriction, and smoothers) are updated adaptively. In addition to this, the linear system in the Newton-Raphson loop is infrequently updated. Systematic numerical experiments are performed to determine the effect of the various options, outlined above, on the C-AMS convergence behaviour. An efficient C-AMS strategy for heterogeneous 3D compressible problems is developed based on overall CPU times. Finally, C-AMS is compared against an industrial-grade Algebraic MultiGrid (AMG) solver. Results of this comparison illustrate that the C-AMS is quite efficient as a nonlinear solver, even when iterated to machine accuracy.

Citations (42)

Summary

We haven't generated a summary for this paper yet.