Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A lightweight MapReduce framework for secure processing with SGX (1705.05684v1)

Published 16 May 2017 in cs.DC and cs.CR

Abstract: MapReduce is a programming model used extensively for parallel data processing in distributed environments. A wide range of algorithms were implemented using MapReduce, from simple tasks like sorting and searching up to complex clustering and machine learning operations. Many of these implementations are part of services externalized to cloud infrastructures. Over the past years, however, many concerns have been raised regarding the security guarantees offered in such environments. Some solutions relying on cryptography were proposed for countering threats but these typically imply a high computational overhead. Intel, the largest manufacturer of commodity CPUs, recently introduced SGX (software guard extensions), a set of hardware instructions that support execution of code in an isolated secure environment. In this paper, we explore the use of Intel SGX for providing privacy guarantees for MapReduce operations, and based on our evaluation we conclude that it represents a viable alternative to a cryptographic mechanism. We present results based on the widely used k-means clustering algorithm, but our implementation can be generalized to other applications that can be expressed using MapReduce model.

Citations (23)

Summary

We haven't generated a summary for this paper yet.