Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kleisli, Parikh and Peleg Compositions and Liftings for Multirelations (1705.05650v1)

Published 16 May 2017 in cs.LO

Abstract: Multirelations provide a semantic domain for computing systems that involve two dual kinds of nondeterminism. This paper presents relational formalisations of Kleisli, Parikh and Peleg compositions and liftings of multirelations. These liftings are similar to those that arise in the Kleisli category of the powerset monad. We show that Kleisli composition of multirelations is associative, but need not have units. Parikh composition may neither be associative nor have units, but yields a category on the subclass of up-closed multirelations. Finally, Peleg composition has units, but need not be associative; a category is obtained when multirelations are union-closed.

Citations (5)

Summary

We haven't generated a summary for this paper yet.