Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Condition for the Concavity Method of Blow-up Solutions to Semilinear Heat Equations (1705.05629v1)

Published 16 May 2017 in math.AP

Abstract: In this paper, we consider the semilinear heat equations under Dirichlet boundary condition [ u_{t}\left(x,t\right)=\Delta u\left(x,t\right)+f(u(x,t)), & \left(x,t\right)\in \Omega\times\left(0,+\infty\right), u\left(x,t\right)=0, & \left(x,t\right)\in\partial \Omega\times\left[0,+\infty\right), u\left(x,0\right)=u_{0}\geq0, & x\in\overline{\Omega}, ] where $\Omega$ is a bounded domain of $\mathbb{R}{N}$ $(N\geq1)$ with smooth boundary $\partial\Omega$. The main contribution of our work is to introduce a new condition [ (C) \alpha \int_{0}{u}f(s)ds \leq uf(u)+\beta u{2}+\gamma,\,\,u>0 ] for some $\alpha, \beta, \gamma>0$ with $0<\beta\leq\frac{\left(\alpha-2\right)\lambda_{0}}{2}$, where $\lambda_{0}$ is the first eigenvalue of Laplacian $\Delta$, and we use the concavity method to obtain the blow-up solutions to the semilinear heat equations. In fact, it will be seen that the condition (C) improves the conditions known so far.

Summary

We haven't generated a summary for this paper yet.