Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithm-Directed Crash Consistence in Non-Volatile Memory for HPC (1705.05541v1)

Published 16 May 2017 in cs.DC

Abstract: Fault tolerance is one of the major design goals for HPC. The emergence of non-volatile memories (NVM) provides a solution to build fault tolerant HPC. Data in NVM-based main memory are not lost when the system crashes because of the non-volatility nature of NVM. However, because of volatile caches, data must be logged and explicitly flushed from caches into NVM to ensure consistence and correctness before crashes, which can cause large runtime overhead. In this paper, we introduce an algorithm-based method to establish crash consistence in NVM for HPC applications. We slightly extend application data structures or sparsely flush cache blocks, which introduce ignorable runtime overhead. Such extension or cache flushing allows us to use algorithm knowledge to \textit{reason} data consistence or correct inconsistent data when the application crashes. We demonstrate the effectiveness of our method for three algorithms, including an iterative solver, dense matrix multiplication, and Monte-Carlo simulation. Based on comprehensive performance evaluation on a variety of test environments, we demonstrate that our approach has very small runtime overhead (at most 8.2\% and less than 3\% in most cases), much smaller than that of traditional checkpoint, while having the same or less recomputation cost.

Citations (9)

Summary

We haven't generated a summary for this paper yet.