Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimized Clustering Estimators for BAO Measurements Accounting for Significant Redshift Uncertainty (1705.05442v3)

Published 15 May 2017 in astro-ph.CO

Abstract: We determine an optimized clustering statistic to be used for galaxy samples with significant redshift uncertainty, such as those that rely on photometric redshifts. To do so, we study the baryon acoustic oscillation (BAO) information content as a function of the orientation of galaxy clustering modes with respect to their angle to the line-of-sight (LOS). The clustering along the LOS, as observed in a redshift-space with significant redshift uncertainty, has contributions from clustering modes with a range of orientations with respect to the true LOS. For redshift uncertainty $\sigma_z \geq 0.02(1+z)$ we find that while the BAO information is confined to transverse clustering modes in the true space, it is spread nearly evenly in the observed space. Thus, measuring clustering in terms of the projected separation (regardless of the LOS) is an efficient and nearly lossless compression of the signal for $\sigma_z \geq 0.02(1+z)$. For reduced redshift uncertainty, a more careful consideration is required. We then use more than 1700 realizations (combining two separate sets) of galaxy simulations mimicking the Dark Energy Survey Year 1 sample to validate our analytic results and optimized analysis procedure. We find that using the correlation function binned in projected separation, we can achieve uncertainties that are within 10 per cent of those predicted by Fisher matrix forecasts. We predict that DES Y1 should achieve a 5 per cent distance measurement using our optimized methods. We expect the results presented here to be important for any future BAO measurements made using photometric redshift data.

Summary

We haven't generated a summary for this paper yet.