Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Mobile Crowdsensing via Peer-to-Peer Data Sharing (1705.05343v1)

Published 15 May 2017 in cs.GT

Abstract: Mobile crowdsensing (MCS) is a new paradigm of sensing by taking advantage of the rich embedded sensors of mobile user devices. However, the traditional server-client MCS architecture often suffers from the high operational cost on the centralized server (e.g., for storing and processing massive data), hence the poor scalability. Peer-to-peer (P2P) data sharing can effectively reduce the server's cost by leveraging the user devices' computation and storage resources. In this work, we propose a novel P2P-based MCS architecture, where the sensing data is saved and processed in user devices locally and shared among users in a P2P manner. To provide necessary incentives for users in such a system, we propose a quality-aware data sharing market, where the users who sense data can sell data to others who request data but not want to sense the data by themselves. We analyze the user behavior dynamics from the game-theoretic perspective, and characterize the existence and uniqueness of the game equilibrium. We further propose best response iterative algorithms to reach the equilibrium with provable convergence. Our simulations show that the P2P data sharing can greatly improve the social welfare, especially in the model with a high transmission cost and a low trading price.

Citations (61)

Summary

We haven't generated a summary for this paper yet.