Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative stochastic homogenization and large-scale regularity (1705.05300v2)

Published 15 May 2017 in math.AP and math.PR

Abstract: This is a preliminary version of a book which presents the quantitative homogenization and large-scale regularity theory for elliptic equations in divergence-form. The self-contained presentation gives new and simplified proofs of the core results proved in the last several years, including the algebraic convergence rate for the variational subadditive quantities, the large-scale Lipschitz and higher regularity estimates and Liouville-type results, optimal quantitative estimates on the first-order correctors and their scaling limit to a Gaussian free field. There are several chapters containing new results, such as: quantitative estimates for the Dirichlet problem, including optimal quantitative estimates of the homogenization error and the two-scale expansion; optimal estimates for the homogenization of the parabolic and elliptic Green functions; and $W{1,p}$-type estimates for two-scale expansions.

Summary

We haven't generated a summary for this paper yet.