Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weierstrass Pure Gaps From a Quotient of the Hermitian Curve (1705.05213v1)

Published 11 Apr 2017 in cs.IT and math.IT

Abstract: In this paper, by employing the results over Kummer extensions, we give an arithmetic characterization of pure gaps at many totally ramified places over the quotients of Hermitian curves, including the well-studied Hermitian curves as special cases. The cardinality of these pure gaps is explicitly investigated. In particular, the numbers of gaps and pure gaps at a pair of distinct places are determined precisely, which can be regarded as an extension of the previous work by Matthews (2001) considered Hermitian curves. Additionally, some concrete examples are provided to illustrate our results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.