Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

May-Wigner transition in large random dynamical systems (1705.05047v2)

Published 15 May 2017 in math-ph, cond-mat.dis-nn, cond-mat.stat-mech, math.MP, and math.PR

Abstract: We consider stability in a class of random non-linear dynamical systems characterised by a relaxation rate together with a Gaussian random vector field which is white-in-time and spatial homogeneous and isotropic. We will show that in the limit of large dimension there is a stability-complexity phase transition analogue to the so-called May-Wigner transition known from linear models. Our approach uses an explicit derivation of a stochastic description of the finite-time Lyapunov exponents. These exponents are given as a system of coupled Brownian motions with hyperbolic repulsion called geometric Dyson Brownian motions. We compare our results with known models from the literature.

Summary

We haven't generated a summary for this paper yet.