Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Committee Approach for Image Restoration Problems using Convolutional Neural Network (1705.04528v2)

Published 12 May 2017 in cs.CV

Abstract: There have been many discriminative learning methods using convolutional neural networks (CNN) for several image restoration problems, which learn the mapping function from a degraded input to the clean output. In this letter, we propose a self-committee method that can find enhanced restoration results from the multiple trial of a trained CNN with different but related inputs. Specifically, it is noted that the CNN sometimes finds different mapping functions when the input is transformed by a reversible transform and thus produces different but related outputs with the original. Hence averaging the outputs for several different transformed inputs can enhance the results as evidenced by the network committee methods. Unlike the conventional committee approaches that require several networks, the proposed method needs only a single network. Experimental results show that adding an additional transform as a committee always brings additional gain on image denoising and single image supre-resolution problems.

Summary

We haven't generated a summary for this paper yet.