Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detection of irregular QRS complexes using Hermite Transform and Support Vector Machine (1705.04519v1)

Published 12 May 2017 in cs.CV

Abstract: Computer based recognition and detection of abnormalities in ECG signals is proposed. For this purpose, the Support Vector Machines (SVM) are combined with the advantages of Hermite transform representation. SVM represent a special type of classification techniques commonly used in medical applications. Automatic classification of ECG could make the work of cardiologic departments faster and more efficient. It would also reduce the number of false diagnosis and, as a result, save lives. The working principle of the SVM is based on translating the data into a high dimensional feature space and separating it using a linear classificator. In order to provide an optimal representation for SVM application, the Hermite transform domain is used. This domain is proved to be suitable because of the similarity of the QRS complex with Hermite basis functions. The maximal signal information is obtained using a small set of features that are used for detection of irregular QRS complexes. The aim of the paper is to show that these features can be employed for automatic ECG signal analysis.

Citations (6)

Summary

We haven't generated a summary for this paper yet.