Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global in time Strichartz estimates for the fractional Schrödinger equations on asymptotically Euclidean manifolds (1705.04403v2)

Published 11 May 2017 in math.AP

Abstract: In this paper, we prove global in time Strichartz estimates for the fractional Schr\"odinger operators, namely $e{-it\Lambda_g\sigma}$ with $\sigma \in (0,\infty)\backslash {1}$ and $\Lambda_g:=\sqrt{-\Delta_g}$ where $\Delta_g$ is the Laplace-Beltrami operator on asymptotically Euclidean manifolds $(\mathbb{R}d,g)$. Let $f_0\in C\infty_0(\mathbb{R})$ be a smooth cutoff equal 1 near zero. We firstly show that the high frequency part $(1-f_0)(P)e{-it\Lambda_g\sigma}$ satisfies global in time Strichartz estimates as on $\mathbb{R}d$ of dimension $d\geq 2$ inside a compact set under non-trapping condition. On the other hand, under the moderate trapping assumption, the high frequency part also satisfies the global in time Strichartz estimates outside a compact set. We next prove that the low frequency part $f_0(P)e{-it\Lambda_g\sigma}$ satisfies global in time Strichartz estimates as on $\mathbb{R}d$ of dimension $d\geq 3$ without using any geometric assumption on $g$. As a byproduct, we prove global in time Strichartz estimates for the fractional Schr\"odinger and wave equations on $(\mathbb{R}d, g), d\geq 3$ under non-trapping condition.

Summary

We haven't generated a summary for this paper yet.