Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Challenges in Monocular Visual Odometry: Photometric Calibration, Motion Bias and Rolling Shutter Effect (1705.04300v4)

Published 11 May 2017 in cs.CV

Abstract: Monocular visual odometry (VO) and simultaneous localization and mapping (SLAM) have seen tremendous improvements in accuracy, robustness and efficiency, and have gained increasing popularity over recent years. Nevertheless, not so many discussions have been carried out to reveal the influences of three very influential yet easily overlooked aspects: photometric calibration, motion bias and rolling shutter effect. In this work, we evaluate these three aspects quantitatively on the state of the art of direct, feature-based and semi-direct methods, providing the community with useful practical knowledge both for better applying existing methods and developing new algorithms of VO and SLAM. Conclusions (some of which are counter-intuitive) are drawn with both technical and empirical analyses to all of our experiments. Possible improvements on existing methods are directed or proposed, such as a sub-pixel accuracy refinement of ORB-SLAM which boosts its performance.

Citations (109)

Summary

We haven't generated a summary for this paper yet.