Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Building a Semantic Role Labelling System for Vietnamese (1705.04038v1)

Published 11 May 2017 in cs.CL

Abstract: Semantic role labelling (SRL) is a task in natural language processing which detects and classifies the semantic arguments associated with the predicates of a sentence. It is an important step towards understanding the meaning of a natural language. There exists SRL systems for well-studied languages like English, Chinese or Japanese but there is not any such system for the Vietnamese language. In this paper, we present the first SRL system for Vietnamese with encouraging accuracy. We first demonstrate that a simple application of SRL techniques developed for English could not give a good accuracy for Vietnamese. We then introduce a new algorithm for extracting candidate syntactic constituents, which is much more accurate than the common node-mapping algorithm usually used in the identification step. Finally, in the classification step, in addition to the common linguistic features, we propose novel and useful features for use in SRL. Our SRL system achieves an $F_1$ score of 73.53\% on the Vietnamese PropBank corpus. This system, including software and corpus, is available as an open source project and we believe that it is a good baseline for the development of future Vietnamese SRL systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Thai-Hoang Pham (15 papers)
  2. Xuan-Khoai Pham (3 papers)
  3. Phuong Le-Hong (15 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.