2000 character limit reached
Torsion pairs over $n$-Hereditary rings (1705.03840v3)
Published 10 May 2017 in math.RA and math.CT
Abstract: We study the notions of $n$-hereditary rings and its connection to the classes of finitely $n$-presented modules, FP$_n$-injective modules, FP$_n$-flat modules and $n$-coherent rings. We give characterizations of $n$-hereditary rings in terms of quotients of injective modules and submodules of flat modules, and a characterization of $n$-coherent using an injective cogenerator of the category of modules. We show two torsion pairs with respect to the FP$_n$-injective modules and the FP$_n$-flat modules over $n$-hereditary rings. We also provide an example of a B\'ezout ring which is 2-hereditary, but not 1-hereditary, such that the torsion pairs over this ring are not trivial.