Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Multi-Objective MDP with Lexicographic Preference: An application to stochastic planning with multiple quantile objective (1705.03597v1)

Published 10 May 2017 in cs.AI

Abstract: In most common settings of Markov Decision Process (MDP), an agent evaluate a policy based on expectation of (discounted) sum of rewards. However in many applications this criterion might not be suitable from two perspective: first, in risk aversion situation expectation of accumulated rewards is not robust enough, this is the case when distribution of accumulated reward is heavily skewed; another issue is that many applications naturally take several objective into consideration when evaluating a policy, for instance in autonomous driving an agent needs to balance speed and safety when choosing appropriate decision. In this paper, we consider evaluating a policy based on a sequence of quantiles it induces on a set of target states, our idea is to reformulate the original problem into a multi-objective MDP problem with lexicographic preference naturally defined. For computation of finding an optimal policy, we proposed an algorithm \textbf{FLMDP} that could solve general multi-objective MDP with lexicographic reward preference.

Summary

We haven't generated a summary for this paper yet.