Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-Density Code-Domain NOMA: Better Be Regular (1705.03326v1)

Published 9 May 2017 in cs.IT and math.IT

Abstract: A closed-form analytical expression is derived for the limiting empirical squared singular value density of a spreading (signature) matrix corresponding to sparse low-density code-domain (LDCD) non-orthogonal multiple-access (NOMA) with regular random user-resource allocation. The derivation relies on associating the spreading matrix with the adjacency matrix of a large semiregular bipartite graph. For a simple repetition-based sparse spreading scheme, the result directly follows from a rigorous analysis of spectral measures of infinite graphs. Turning to random (sparse) binary spreading, we harness the cavity method from statistical physics, and show that the limiting spectral density coincides in both cases. Next, we use this density to compute the normalized input-output mutual information of the underlying vector channel in the large-system limit. The latter may be interpreted as the achievable total throughput per dimension with optimum processing in a corresponding multiple-access channel setting or, alternatively, in a fully-symmetric broadcast channel setting with full decoding capabilities at each receiver. Surprisingly, the total throughput of regular LDCD-NOMA is found to be not only superior to that achieved with irregular user-resource allocation, but also to the total throughput of dense randomly-spread NOMA, for which optimum processing is computationally intractable. In contrast, the superior performance of regular LDCD-NOMA can be potentially achieved with a feasible message-passing algorithm. This observation may advocate employing regular, rather than irregular, LDCD-NOMA in 5G cellular physical layer design.

Citations (33)

Summary

We haven't generated a summary for this paper yet.