Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trimming the Hill estimator: robustness, optimality and adaptivity (1705.03088v2)

Published 8 May 2017 in stat.ME

Abstract: We introduce a trimmed version of the Hill estimator for the index of a heavy-tailed distribution, which is robust to perturbations in the extreme order statistics. In the ideal Pareto setting, the estimator is essentially finite-sample efficient among all unbiased estimators with a given strict upper break-down point. For general heavy-tailed models, we establish the asymptotic normality of the estimator under second order conditions and discuss its minimax optimal rate in the Hall class. We introduce the so-called trimmed Hill plot, which can be used to select the number of top order statistics to trim. We also develop an automatic, data-driven procedure for the choice of trimming. This results in a new type of robust estimator that can {\em adapt} to the unknown level of contamination in the extremes. As a by-product we also obtain a methodology for identifying extreme outliers in heavy tailed data. The competitive performance of the trimmed Hill and adaptive trimmed Hill estimators is illustrated with simulations.

Citations (5)

Summary

We haven't generated a summary for this paper yet.