Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large Deviations for Small Noise Diffusions in a Fast Markovian Environment (1705.02948v1)

Published 8 May 2017 in math.PR

Abstract: A large deviation principle is established for a two-scale stochastic system in which the slow component is a continuous process given by a small noise finite dimensional It^{o} stochastic differential equation, and the fast component is a finite state pure jump process. Previous works have considered settings where the coupling between the components is weak in a certain sense. In the current work we study a fully coupled system in which the drift and diffusion coefficient of the slow component and the jump intensity function and jump distribution of the fast process depend on the states of both components. In addition, the diffusion can be degenerate. Our proofs use certain stochastic control representations for expectations of exponential functionals of finite dimensional Brownian motions and Poisson random measures together with weak convergence arguments. A key challenge is in the proof of the large deviation lower bound where, due to the interplay between the degeneracy of the diffusion and the full dependence of the coefficients on the two components, the associated local rate function has poor regularity properties.

Summary

We haven't generated a summary for this paper yet.