Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A local ensemble transform Kalman particle filter for convective scale data assimilation (1705.02786v2)

Published 8 May 2017 in stat.AP and physics.ao-ph

Abstract: Ensemble data assimilation methods such as the Ensemble Kalman Filter (EnKF) are a key component of probabilistic weather forecasting. They represent the uncertainty in the initial conditions by an ensemble which incorporates information coming from the physical model with the latest observations. High-resolution numerical weather prediction models ran at operational centers are able to resolve non-linear and non-Gaussian physical phenomena such as convection. There is therefore a growing need to develop ensemble assimilation algorithms able to deal with non-Gaussianity while staying computationally feasible. In the present paper we address some of these needs by proposing a new hybrid algorithm based on the Ensemble Kalman Particle Filter. It is fully formulated in ensemble space and uses a deterministic scheme such that it has the ensemble transform Kalman filter (ETKF) instead of the stochastic EnKF as a limiting case. A new criterion for choosing the proportion of particle filter and ETKF update is also proposed. The new algorithm is implemented in the COSMO framework and numerical experiments in a quasi-operational convective-scale setup are conducted. The results show the feasibility of the new algorithm in practice and indicate a strong potential for such local hybrid methods, in particular for forecasting non-Gaussian variables such as wind and hourly precipitation.

Summary

We haven't generated a summary for this paper yet.