Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Recognition of Mammal Genera on Camera-Trap Images using Multi-Layer Robust Principal Component Analysis and Mixture Neural Networks (1705.02727v1)

Published 8 May 2017 in cs.CV

Abstract: The segmentation and classification of animals from camera-trap images is due to the conditions under which the images are taken, a difficult task. This work presents a method for classifying and segmenting mammal genera from camera-trap images. Our method uses Multi-Layer Robust Principal Component Analysis (RPCA) for segmenting, Convolutional Neural Networks (CNNs) for extracting features, Least Absolute Shrinkage and Selection Operator (LASSO) for selecting features, and Artificial Neural Networks (ANNs) or Support Vector Machines (SVM) for classifying mammal genera present in the Colombian forest. We evaluated our method with the camera-trap images from the Alexander von Humboldt Biological Resources Research Institute. We obtained an accuracy of 92.65% classifying 8 mammal genera and a False Positive (FP) class, using automatic-segmented images. On the other hand, we reached 90.32% of accuracy classifying 10 mammal genera, using ground-truth images only. Unlike almost all previous works, we confront the animal segmentation and genera classification in the camera-trap recognition. This method shows a new approach toward a fully-automatic detection of animals from camera-trap images.

Citations (13)

Summary

We haven't generated a summary for this paper yet.